2–7 ENERGY CONVERSION EFFICIENCIES

Efficiency is one of the most often used terms in thermodynamics, and it indicates how well an energy conversion or transfer process is accomplished.

Efficiency is also one of the most often misused terms in thermodynamics and a source of misunderstandings. This is because efficiency is often used without being properly defined first. Next, we will clarify this further and define some efficiencies commonly used in practice. Efficiency, in general, can be expressed in terms of the desired output and the required input as

$$Efficiency = \frac{\text{Desired output}}{\text{Required input}}$$
(2-41)

If you are shopping for a water heater, a knowledgeable salesperson will tell you that the efficiency of a conventional electric water heater is about 90 percent (Fig. 2–53).

Water heater

Type	Efficiency
Gas, conventional	55%
Gas, high-efficiency	62%
Electric, conventional	90%
Electric, high-efficiency	94%

FIGURE 2-53

Typical efficiencies of conventional and high-efficiency electric and natural gas water heaters.

You may find this confusing, since the heating elements of electric water heaters are resistance heaters, and the efficiency of all resistance heaters is 100 percent as they convert all the electrical energy they consume into thermal energy. A knowledgeable salesperson will clarify this by explaining that the heat losses from the hot-water tank to the surrounding air amount to 10 percent of the electrical energy consumed, and the **efficiency of a water heater** is defined as the ratio of the *energy delivered to the house by hot water* to the *energy supplied to the water heater*. A clever salesperson may even talk you into buying a more expensive water heater with thicker insulation that has an efficiency of 94 percent. If you are a knowledgeable consumer and have access to natural gas, you will probably purchase a gas water heater whose efficiency is only 55 percent since a gas unit costs about the same as an electric unit to purchase and install, but the annual energy cost of a gas unit will be much less than that of an electric unit.

Perhaps you are wondering how the efficiency for a gas water heater is defined, and why it is much lower than the efficiency of an electric heater. As a general rule, the efficiency of equipment that involves the combustion of a fuel is based on the **heating value of the fuel**, which is *the amount of heat released when a unit amount of fuel at room temperature is completely burned and the combustion products are cooled to the room temperature* (Fig. 2–54). Then the performance of combustion equipment can be characterized by **combustion equipment efficiency** $\eta_{\text{comb. equip.}}$, defined as

$$\eta_{\text{comb. equip.}} = \frac{Q_{\text{useful}}}{\text{HV}} = \frac{\text{Useful heat delivered by the combustion equipment}}{\text{Heating value of the fuel burned}}$$
 (2-42)

This efficiency can take different names, depending on the type of the combustion unit such as furnace efficiency η_{furnace} , boiler efficiency η_{boiler} , or heater efficiency η_{heater} . For example, an efficiency of 70 percent for a coalburning heater used to heat a building in winter indicates that 70 percent of the heating value of the coal is transferred to the building as useful heat while the remaining 30 percent is lost, mostly by the hot stack gases leaving the heater.

Most fuels contain hydrogen, which forms water when burned, and the heating value of a fuel will be different depending on whether the water in combustion products is in the liquid or vapor form. The heating value is called the *lower heating value*, or LHV, when the water leaves as a vapor, and the *higher heating value*, or HHV, when the water in the combustion gases is completely condensed and thus the heat of vaporization is also recovered. The difference between these two heating values is equal to the product of the amount of water and the enthalpy of vaporization of water at room temperature. For example, the lower and higher heating values of gasoline are 44,000 kJ/kg and 47,300 kJ/kg, respectively. An efficiency definition should make it clear whether it is based on the higher or lower heating value of the fuel. Efficiencies of cars and jet engines are normally based on *lower heating values* since water normally leaves as a vapor in the exhaust gases, and it is not practical to try to recover the heat of vaporization. Efficiencies of furnaces, on the other hand, are based on *higher heating values*.

The efficiency of space heating systems of residential and commercial buildings is usually expressed in terms of the **annual fuel utilization efficiency**, or AFUE, which accounts for the combustion equipment efficiency as well as other losses such as heat losses to unheated areas and start-up and cool-down losses. The AFUE of most new heating systems is about 85 percent, although the AFUE of some old heating systems is under 60 percent. The AFUE of some new high-efficiency furnaces exceeds 96 percent, but the high cost of such furnaces cannot be justified for locations with mild to moderate winters. Such high efficiencies are achieved by reclaiming most of the heat in the flue gases, condensing the water vapor, and discharging the flue gases at temperatures as low as 38°C (or 100°F) instead of about 200°C (or 400°F) for the conventional models. For *car engines*, the work output is understood to be the power delivered by the crankshaft. But for power plants, the work output can be the mechanical power at the turbine exit, or the electrical power output of the generator.

A generator is a device that converts mechanical energy to electrical energy, and the effectiveness of a generator is characterized by the **generator efficiency**, which is the ratio of the *electrical power output* to the *mechanical power input*. The *thermal efficiency* of a power plant, which is of primary interest in thermodynamics, is usually defined as the ratio of the net shaft work output of the turbine to the heat input to the working fluid. The effects of other factors are incorporated by defining an **overall efficiency** for the power plant as the ratio of the *net electrical power output* to the *rate of fuel energy input*. That is,

$$\eta_{\text{overall}} = \eta_{\text{comb. equip.}} \eta_{\text{thermal}} \eta_{\text{generator}} = \frac{\dot{W}_{\text{net,electric}}}{\text{HHV} \times \dot{m}_{\text{fuel}}}$$
(2-43)

The overall efficiencies are about 25–30 percent for gasoline automotive engines, 35–40 percent for diesel engines, and up to 60 percent for large power plants.

We are all familiar with the conversion of electrical energy to *light* by incandescent lightbulbs, fluorescent tubes, and high-intensity discharge lamps. The efficiency for the conversion of electricity to light can be defined as the ratio of the energy converted to light to the electrical energy consumed. For example, common incandescent lightbulbs convert about 5 percent of the electrical energy they consume to light; the rest of the energy consumed is dissipated as

EXAMPLE 2–14 Cost of Cooking with Electric and Gas Ranges

The efficiency of cooking appliances affects the internal heat gain from them since an inefficient appliance consumes a greater amount of energy for the same task, and the excess energy consumed shows up as heat in the living space. The efficiency of open burners is determined to be 73 percent for electric units and 38 percent for gas units (Fig. 2–57). Consider a 2-kW electric burner at a location where the unit costs of electricity and natural gas are \$0.12/kWh and \$1.20/therm, respectively. Determine the rate of energy consumption by the burner and the unit cost of utilized energy for both electric and gas burners.

SOLUTION The operation of electric and gas ranges is considered. The rate of energy consumption and the unit cost of utilized energy are to be determined. *Analysis* The efficiency of the electric heater is given to be 73 percent. Therefore, a burner that consumes 2 kW of electrical energy will supply

$$\dot{Q}_{\text{utilized}} = (\text{Energy input}) \times (\text{Efficiency}) = (2 \text{ kW})(0.73) = 1.46 \text{ kW}$$

of useful energy. The unit cost of utilized energy is inversely proportional to the efficiency and is determined from

Cost of utilized energy = $\frac{\text{Cost of energy input}}{\text{Efficiency}} = \frac{\$0.12/\text{kWh}}{0.73} = \$0.164/\text{kWh}$

Noting that the efficiency of a gas burner is 38 percent, the energy input to a gas burner that supplies utilized energy at the same rate (1.46 kW) is

$$\dot{Q}_{input,gas} = \frac{\dot{Q}_{utilized}}{Efficiency} = \frac{1.46 \text{ kW}}{0.38} = 3.84 \text{ kW}$$
 (= 13,100 Btu/h)

since 1 kW = 3412 Btu/h. Therefore, a gas burner should have a rating of at least 13,100 Btu/h to perform as well as the electric unit.

Noting that 1 therm = 29.3 kWh, the unit cost of utilized energy in the case of a gas burner is determined to be

Cost of utilized energy =
$$\frac{\text{Cost of energy input}}{\text{Efficiency}} = \frac{\$1.20/29.3 \text{ kWh}}{0.38}$$

= $\$0.108/\text{kWh}$

2-8 ENERGY AND ENVIRONMENT

The conversion of energy from one form to another often affects the environment and the air we breathe in many ways, and thus the study of energy is not complete without considering its impact on the environment (Fig. 2-62). Fossil fuels such as coal, oil, and natural gas have powering the industrial been development and the amenities of modern life that we enjoy since the 1700s, but this has not been without any undesirable side effects. From the soil we farm and the water we drink to the air we breathe, the environment has been paying a heavy toll for it. Pollutants emitted during the of fossil combustion fuels are responsible for smog, acid rain, global warming, and climate change. The environmental pollution has reached such high levels that it has become a serious threat to vegetation, wildlife, and human health. Air pollution has been the cause of numerous health

problems, including asthma and cancer.

FIGURE 2–62 Energy conversion processes are often accompanied by environmental pollution.

It is estimated that over 60,000 people in the United States alone die each year due to heart and lung diseases related to air pollution. Hundreds of elements and compounds such as benzene and formaldehyde are known to be emitted during the combustion of coal, oil, natural gas, and wood in electric power plants, engines of vehicles, furnaces, and even fireplaces. Some compounds are added to liquid fuels for various reasons (such as MTBE to raise the octane number of the fuel and also to oxygenate the fuel in winter months to reduce urban smog). The largest source of air pollution is the motor vehicles, and the pollutants released by the vehicles are usually grouped as hydrocarbons (HC), nitrogen oxides (NO*x*), and carbon monoxide (CO)

(Fig. 2–63). The HC emissions make up a large portion of volatile organic compound

(VOC) emissions, and the two terms are generally used interchangeably for motor vehicle emissions. A significant portion of the VOC or HC emissions is caused by the evaporation of fuels during refueling or spillage during spitback or by evaporation from gas tanks with faulty caps that do not close tightly. The solvents, propellants, and household cleaning products that contain benzene, butane, or other HC products are also significant sources of HC emissions.

FIGURE 2–63 Motor vehicles are the largest source of air pollution.

The increase of environmental pollution at alarming rates and the rising awareness of its dangers made it necessary to control it by legislation and international treaties. In the United States, the Clean Air Act of 1970 (whose passage was aided by the 14-day smog alert in Washington that year) set limits on pollutants emitted by large plants and vehicles. These early standards focused on emissions of hydrocarbons, nitrogen oxides, and carbon monoxide.

New cars were required to have catalytic converters in their exhaust systems to reduce HC and CO emissions. As a side benefit, the removal of lead from gasoline to permit the use of catalytic converters led to a significant reduction in toxic lead emissions. Emission limits for HC, NOx, and CO from cars have been declining steadily since 1970. The Clean Air Act of 1990 made the requirements on emissions even tougher, primarily for ozone, CO, nitrogen dioxide, and particulate matter (PM).

As a result, today's industrial facilities and vehicles emit a fraction of the pollutants they used to emit a few decades ago. The HC emissions of cars, for example, decreased from about 8 gpm (grams per mile) in 1970 to 0.33 gpm in 2010. This is a significant reduction since many of the gaseous toxics from motor vehicles and liquid fuels are hydrocarbons.

Children are most susceptible to the damages caused by air pollutants since their organs are still developing. They are also exposed to more pollution since they are more active, and thus they breathe faster. People with heart and lung problems, especially those with asthma, are most affected by air pollutants.

This becomes apparent when the air pollution levels in their neighborhoods rise to high levels.

Ozone and Smog

If you live in a metropolitan area such as Los Angeles, you are probably familiar with urban smog the dark yellow or brown haze that builds up in a large, stagnant air mass and hangs over populated areas on calm, hot summer days.

Smog is made up mostly of ground-level ozone (O_3) , but it also contains many other chemicals, including carbon monoxide (CO), particulate matter such as soot and dust, and volatile organic compounds (VOCs) such as benzene, butane, and other hydrocarbons. The harmful ground-level ozone should not be confused with the useful ozone layer high in the stratosphere that protects the earth from the sun's

harmful ultraviolet rays. Ozone at ground level is a pollutant with several adverse health effects.

The primary source of both nitrogen oxides and hydrocarbons is motor vehicles. Hydrocarbons and nitrogen oxides react in the presence of sunlight on hot, calm days

to form ground-level ozone (Fig. 2–64).

presence of sunlight on hot, calm days.

Smog formation usually peaks in late afternoons when the temperatures are highest and there is plenty of sunlight. Although ground-level smog and ozone form in urban areas with heavy traffic or industry, the prevailing winds can transport them several hundred miles to other cities. This shows that pollution knows no boundaries, and it is a global problem.

Ozone irritates eyes and damages the air sacs in the lungs where oxygen and carbon dioxide are exchanged, causing eventual hardening of this soft and spongy tissue. It also causes shortness of breath, wheezing, fatigue, headaches, and nausea, and it aggravates respiratory problems such as asthma.

Every exposure to ozone does a little damage to the lungs, just like cigarette smoke, eventually reducing a person's lung capacity. Staying indoors and minimizing physical activity during heavy smog minimizes damage. Ozone also harms vegetation by damaging leaf tissues. To improve the air quality in areas with the worst ozone problems, reformulated gasoline (RFG) that contains at least 2 percent oxygen was introduced. The use of RFG has resulted in a significant reduction in the

emission of ozone and other pollutants, and its use is mandatory in many smog-prone areas.

The other serious pollutant in smog is *carbon monoxide*, which is a colorless, odorless, poisonous gas. It is mostly emitted by motor vehicles, and it can build to dangerous levels in areas with heavy congested traffic. It deprives the body's organs from getting enough oxygen by binding with the red blood cells that would otherwise carry oxygen. At low levels, carbon monoxide decreases the amount of oxygen supplied to the brain and other organs and muscles, slows body reactions and reflexes, and impairs judgment. It poses a serious threat to people with heart disease because of the fragile condition of the circulatory system and to fetuses because of the oxygen needs of the developing brain. At high levels, it can be fatal, as evidenced by the many deaths caused by cars that are warmed up in closed garages or by exhaust gases leaking into the cars.

Smog also contains suspended particulate matter such as dust and soot emitted by vehicles and industrial facilities. Such particles irritate the eyes and the lungs since they may carry compounds such as acids and metals.

Acid Rain

Fossil fuels are mixtures of various chemicals, including small amounts of sulfur. The sulfur in the fuel reacts with oxygen to form sulfur dioxide (SO₂), which is an air pollutant. The main source of SO₂ is the electric power plants that burn high-sulfur coal. The Clean Air Act of 1970 has limited the SO₂ emissions severely, which forced the plants to install SO₂ scrubbers, to switch to low-sulfur coal, or to gasify the coal and recover the sulfur. Motor vehicles also contribute to SO₂ emissions since gasoline and diesel fuel also contain small amounts of sulfur. Volcanic eruptions and hot springs also release sulfur oxides (the cause of the rotten egg smell).

The sulfur oxides and nitric oxides react with water vapor and other chemicals high in the atmosphere in the presence of sunlight to form sulfuric and nitric acids (Fig. 2–65). The acids formed usually dissolve in the suspended water droplets in clouds or fog. These acid-laden droplets, which can be as acidic as lemon juice, are washed from the air onto the soil by rain or snow. This is known as **acid rain**. Soil can neutralize a certain amount of acid, but the amounts produced by burning high-sulfur coal are more than the soil can handle. As a result, many lakes and rivers in industrial areas such as New York, Pennsylvania, and Michigan have become too acidic for fish to grow. Forests in those areas also experience a slow death because they absorb the acids through their leaves, needles, and roots. Even marble structures deteriorate due to acid rain. The magnitude of the problem was not recognized until the early 1970s, and measures have been taken since then to reduce the sulfur dioxide emissions drastically by installing scrubbers in power plants and by desulfurizing coal before combustion.

The Greenhouse Effect: Global Warming and Climate Change

You have probably noticed that when you leave your car under direct sunlight on a sunny day, the interior of the car gets much warmer than the air outside, and you may have wondered why the car acts like a heat trap. This is because glass at thicknesses encountered in practice transmits over 90 percent of radiation in the visible range and is practically opaque (nontransparent) to radiation in the longer wavelength infrared regions. Therefore, glass allows the solar radiation to enter freely but blocks the infrared radiation emitted by the interior surfaces. This causes a rise in the interior

temperature as a result of the thermal energy buildup in the car. This heating effect is known as the **greenhouse effect** because it is exploited primarily in greenhouses. The greenhouse effect is also experienced on a larger scale on earth. The surface of the earth, which warms up during the day as a result of the absorption of solar energy, cools down at night by radiating part of its energy into deep space as infrared radiation. Carbon dioxide (CO₂), water vapor, and trace amounts of some other gases such as methane and nitrogen oxides act like a blanket and keep the earth warm at night by blocking the heat radiated from the earth (Fig. 2–66). Therefore, these gases

are called "greenhouse gases," with CO_2 being the primary component. Water vapor is usually taken out of this list since it comes down as rain or snow as part of the water cycle and because human activities that produce water (such as the burning of fossil fuels) do not have much impact on its concentration in the atmosphere (which is mostly due to evaporation from rivers, lakes, and oceans). CO_2 is different, however, in that people's activities do make a difference in CO_2 concentration in the atmosphere.

The greenhouse effect makes life on earth possible by keeping the earth warm (about 30°C warmer). However, excessive amounts of these gases disturb the delicate balance by trapping too much energy, which causes the average temperature of the earth to rise and the climate at some localities to change. These undesirable consequences of the greenhouse effect are referred to as **global warming** or **global climate change**.

EXAMPLE 2–17 Reducing Air Pollution by Geothermal Heating

A geothermal power plant in Nevada is generating electricity using geothermal water extracted at 180°C and injected back into the ground at 85°C. It is proposed to use the injected brine to heat the residential and commercial buildings in the area, and calculations show that the geothermal heating system can save 18 million therms of natural gas a year. Determine the amount of NO_x and CO₂ emissions the geothermal system will save each year. Take the average NO_x and CO₂ emissions of gas furnaces to be 0.0047 kg/therm and 6.4 kg/therm, respectively.

SOLUTION The gas heating systems in an area are being replaced by a geothermal district heating system. The amounts of NO_x and CO_2 emissions saved per year are to be determined.

Analysis The amounts of emissions saved per year are equivalent to the amounts emitted by furnaces when 18 million therms of natural gas are burned,

 NO_x savings = (NO_x emission per therm)(No. of therms per year)

= $(0.0047 \text{ kg/therm})(18 \times 10^6 \text{ therm/year})$ = $8.5 \times 10^4 \text{ kg/year}$

 $CO_2 \text{ savings} = (CO_2 \text{ emission per therm})(\text{No. of therms per year})$ $= (6.4 \text{ kg/therm})(18 \times 10^6 \text{ therm/year})$ $= 1.2 \times 10^8 \text{ kg/year}$

Discussion A typical car on the road generates about 8.5 kg of NO_x and 6000 kg of CO₂ a year. Therefore the environmental impact of replacing the gas heating systems in the area with the geothermal heating system is equivalent to taking 10,000 cars off the road for NO_x emission and taking 20,000 cars off the road for CO₂ emission. The proposed system should have a significant effect on reducing smog in the area.